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R R Sari?, D Merlinif’§ and R CalinonS 
t Labomtoire de Physique Thtorique, Ecole Polytechnique Ftdtrale, 1006 Laussanne, 
Switzerland 
$ Dtpartement de Physique, Ecole Polytechnique Fbderale, 1006 Lausanne, Switzerland 

Received 9 September 1975, in final form 15 April 1976 

Abstract. We consider the v-dimensional one-component classical plasma model in a 
spherical domain. We give an heuristic derivation of the H-stability bounds which enables 
us to understand their physical meaning as well as the nature of the ground state. Then, 
accurate estimations of the binding energy of various Wigner lattices are found theoretically 
as well as computed numerically. For Y = 2 dimensions, the lowest energy configuration of 
particles corresponds to the triangular lattice. For Y = 3 dimensions, our results agree with 
those of Coldwell-Horsfall and Maradudin. 

1. Introduction 

The term ‘plasma’ denotes a gas of charged particles of opposite eledtrical charges 
possessing overall neutrality. The point charged particles (electrons) may be immersed 
in an uniform neutralizing background of positive charge and density p. This model of a 
plasma, which we shall treat classically, is then referred to as the one-component plasma 
(OCP). In any dimension v, the thermodynamic state of this system is characterized 
essentially (Sari and Merlini 1975)’ by the dimensionless parameter y‘”’ = pe2p”-2”y, 

As in other models of statistical mechanics, some different features, due to the 
dimensionality arise in this system, the Coulomb potential being defined as the 
fundamental solution of the Poisson equation. These differences appear, for example, 
in thermodynamics (equation of state). 

It is only recently(( that the existence of the thermodynamic limit of the free energy 
density possessing good convexity properties (in a certain region of y‘”’), has been 
proved for v > 1 (v = 3 dimensions, Lieb and Narnhofer 1975; v = 2 dimensions, Sari 
and Merlini 1976). This existence is partially assured by the H-stability property which 
requires that there exists a lower bound (density dependent) to the potential energy per 
particle, V”’(N)  3 -Nb‘”’(p),  for any configuration of N particles in the box. From the 
mathematical point of view, such a bound provides a lower bound to the free energy 
density. 

(P = l / k T ) .  

0 Present address: Centre de Recherche en Physique des Plasmas 21, av. des Bains, CH-1007 Lausanne, 
Switzerland. 
/I The present work was done before these results were established. 

1539 



1540 R R Sari, D Merlini and R Calinon 

However, it might be observed, although it can rarely be proved, that some 
many-body potentials reach their minima at regular lattice structures. Some years ago, 
Wigner (1938) had realized that at sufficiently low densities, the three-dimensional 
(OCP) model could crystallize into a solid-the so called Wigner lattice. This crystalline 
state, or phase, may be expected to exist not only in the ground state, but also at finite 
temperatures. A known example is given precisely by the classical OCP in one 
dimension: the state of lowest energy corresponds (Choquard and Sari 1973) to that of a 
crystal for which p-’ is the lattice constant and -b‘”(p) = e2 /12p  the binding energy; at 
finite temperatures in the one-component model limit, a periodicity property of the 
correlation functions was discovered (Baxter 1964) in the associated eigenvalue 
problem. Afterwards, it was shown (Kunz 1974) that the system is indeed in a crystalline 
state for all temperatures and densities. This crystal is nothing else but the classical 
analogue of the Wigner lattice. More generally, for any v, we shall see that the potential 
energy of the system contains a translationally invariant two-body contribution (the 
Coulomb potential), of repulsive type, and a one-body term (harmonic potential), due 
to the continuum which has the effect of attractingeach particle to the centre of the box, 
taken to be spherical for the sake of simplicity. Thus, the existence of particle 
configurations which minimize the net electrostatic interaction energy ( l(;,)“(N) - 
-aN) ,  is not excluded a priori for v > 1. 

Since Wigner’s original work, there has been much effort devoted to the study of the 
solid phase of the OCP (Salpeter 1961, Coldwell-Horsfall and Maradudin 1960, Brush 
eta1 1966, Pollock and Hansen 1973) in the three-dimensional case. The lattice with 
the lowest binding energy should, in all probability, be among one of the most 
symmetrical types, cubic centred, cubic face centred or hexagonal of ‘close packed’ 
type. Unfortunately, the energies of different lattices can be computed only with 
limited accuracy; and since the difference between them amounts to several percent 
only, the question of the choice of the most stable lattice remains unsolved. In the 
two-dimensional case, no result is known about this subject. 

The purpose of this paper is twofold: to give an heuristic derivation of the 
H-stability bounds, as well as their physical interpretation, and to characterize the state 
of lowest energy of the system ($0  2 and 3). The numerical values of the binding energy 
of various lattices (v = 2 and 3 dimensions) are obtained, (0 4). The credibility of our 
numerical results is tested by a simple and accurate theoretical estimation of binding 
energies, which is derived in a controlled approximation. 

2. The H-stability property 

2.1. Definition of the model with impenetrable wall boundary conditions 

We consider the classical OCP model in the v-dimensional ball B‘”’(R), of radius R and 
centred at the origin. The volume of B‘”’(R) is given by (B‘”’(R)I = SVRYv-’, where 
S, = 277””r(v/2) is the surface of the v-dimensional unit sphere. 

The N point charges (particle charge -e )  are in the domain B‘”’(R) in the presence 
of an inert and homogeneous neutralizing background of charge density 
leJp = (elN/IB‘”’(R)(. We shall always assume overall charge neutrality for the system. 

From electrostatics, the effect of the uniform background is that of an attractive 
one-body harmonic potential; and one suspects the existence of a ground state, i.e. a 
configuration 9 of particles with minimum energy corresponding to the most stable 
arrangement of particles. 
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The potential energy of the system consists of three contributions: 

V‘”(N) = + vi: + v$ 
N 

d”x+‘”(lx - X ,  I) e’ N 

2 r # j  I = I  B ( ” ) ( R )  

+= /j d”x dYy4‘”’(lx -yl)  

=- c 4 ( u ) ( l x l  - x j l ) - e 2 p  1 I 
2 2  

2 (B(’)(R))* 

where the Coulomb interaction potential @(Y)(/xl), defined by 

u f 2  

v = 2  (2.2) 

is the fundamental solution (Wermer 1974), which at infinity vanishes for v > 2, and 
becomes infinite for U = 1,2, of the u-dimensional Poisson equation (Schwartz 1965) 

and 
At ) “ ) ( ( x  1) = - 1  v - 21SY 6, (1x1) 

A -In ( x [ = - 2 ~ S ( [ x l )  

u z 2  

U = 2. 

With these definitions of 4(”)(/xl) we can evaluate (2.1) and, after performing the 
integrations, we have the following explicit form for the total potential energy: 

where 

Since S,R“p = UN, E,, can also be written as 

] -- f (”) - 1 -2/vN1 +2/ Y 

7 €or w f 2 

for U = 2. 

For U = 1, the particles can be naturally ordered, and our Hamiltonian coincides 
with the usual expressions (Baxter 1963, Choquard and Sari 1973). For u = 2 ,  we 
obtain explicitly: 

The singular feature of the two-dimensional case is that the coordinates x, only enter in 
the combination (xiI/R in the Hamiltonian, which is the essence of the scaling trick 
considered by various authors (Salzberg and Prager 1963, Knorr 1968, Hauge and 
Hemmer 1971, Deutsch and Lavaud 1974). However, in any dimension, there is the 
appearance of the one-body harmonic potential due to the presence of the backpound. 
Moreover, although the correlation functions may not be affected by the term B, which 
cancels out, the same is not true for the free energy, since it depends on the density and 
the dimensionality. 
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2.2. Lower bounds on V‘”’(N) 

The first parameter which enters in the potential energy is the particle density p which, 
because of charge neutrality, coincides with that of the background. On the other hand, 
the second parameter, the dimensionality U, enters, in particular, through the explicit 
dependence of the term B,. Thus, the lower bounds for the energy will depend only on p 
and U. 

The lower bounds to the potential energy per particle can be found in the following 
way. 

For a particle ( N =  1) in the domain B(”) (R) ,  the ground state corresponds to the 
configuration where this particle is at the centre of the domain. This is the configuration 
of highest symmetry. Then, far N = 1, we have for the energy of the ground state: 

1 - 1  b -  2 

[-I-+- u + l  1 
u + 2  2 \ ” , > &  

Adding other particles and increasing the domain B‘”’(R), while keeping the density p 
constant, the energy per particle can only be greater, because of the Coulomb repulsion 
between the particles; and the symmetry of the configuration of particles can only be 
lower. Thus, the energy per particle for a particle ( N  = 1) in the ground state should be a 
lower bound to the energy per particle for N >  1. This can easily be verified for small N. 
Therefore, we propose the following bounds: 

V v ) ( N )  3 -Nb‘”’(p) (2 .4 )  
where the equality can eventually be approached very closely for the ground state of the 
system in the thermodynamic limit (see 0 3 ) .  

b‘’)(p)  = - e2 /12p  

Explicitly, we have: 

b‘2’(p) = e’(;+: In ~ r p )  (2 .5 )  

It is interesting to notice that the proposed bounds (2.5) are the exact ones, proved 
for U =  1 dimension by direct computation (Choquard and Sari 1973), for u = 3  
dimensions (Lieb and Narnhofer 1974) and U = 2 dimensions (Sari and Merlini 1975) by 
using an idea due to Onsager (1933) where one replaces the point charges by smeared 
charge distributions. 

However, the argument used in our heuristic derivation gives, for any dimension, 
the meaning of these lower bounds:--b‘”(p) is simply the Coulomb energy of the 
neutral elementary system (consisting of just one particle and the background) in the 
configuration of lowest energy. 

3. Characterization of the ground state 

In this section we analyse in more detail the lower bounds to the energy per particle and 
the nature of the state of the system of lowest energy (ground state). For the classical 
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OCP, this state is certainly obtained when the particles are at rest in the corresponding 
configuration x“. This configuration defines the most stable arrangement of the 
particles. 

Property 1 .  For v # 1, the configuration x“ is infinitely degenerate. 

This is due to the rotation invariance of the potential energy. 

Property 2 (Peierls 1955). x“ is an equilibrium configuration, i.e. the force on each 
particle i ,  ( i  = 1, , . . , N ) ,  vanishes: 

for x, ex “ .  

As Peierls remarked, this property is automatically satisfied for any arrangement of 
the particles in which the positions of each of them is a centre of symmetry of x“ (infinite 
system). However, for a spherical box, the centre is the only centre of symmetry. 

Property 3. For x ,  E x“, necessarily we have 2: x ,  = 0. 

This condition expresses the fact that the centre of mass of particles is frozen at the 
origin or, in other words, that the dipole moment of the system vanishes. 

Property 4 .  Let 9 = { ( x i ) }  be the set of all possible configurations ( x , )  of the system. For 
any ( x , )  E 9, we define a mappingx :3+2’, x , l h l ~ A ~ ~ ,  such that each vector x ,  is dilated or 
retracted by A (A E Rt). Then, for any ( x , ) ,  the class ( A x , )  €9 possesses an element 
( x ; )  = (A&)  for which V‘”’(N) is minimum. 

In fact, if we write for the configuration ( x i )  of particles (V‘”’(N)= V‘”’(N; x , ) ;  

The ground state is characterized, for instance, by the following properties. 

a VV)(N)/I3Xi = 0, 

vg= 
V”’(N; x , ) =  ~ ~ ( X , ) + A ‘ ” ’ ( X , ) - B ~  

where A‘”’(x i )  = ( e 2 N / 2 R V )  XEl / x ,  1 2 ,  the condition aV”)(N; Axi)/aA = 0 is equivalent 
to: 

C i ( A x i )  = 2A‘”’(Ax,), 

e 2 N ( N -  1 ) / 2  = 2A‘2’(Ax,) ,  

for v # 2 

for v = 2 .  
(3.1) 

Let A. be the value of A for which the condition (3.1) is realized. One can verify that 
a2V‘”(N;Axi) /aA2>O for A = A o .  Hence, at the minimum of v‘”’(N), that is for the 
configuration x“ of particles, in any dimension: 

V;/”(N) = 1. 2v Vu)  PP +a e2N(N - 1) - EU ( 3 . 2 )  

SV,2 being the Kronecker symbol. From property 2 ,  we deduce, for x“, that A. is 
normalized to unity, i.e. v~)(xl) = 2A‘”’(xl) for xi E x“ and v # 2 .  Evident1 the 

A o l X i )  is less than or equal to R to preserve the charge neutrality. Indeed, one can verify 
this for small N in any dimension. We assume that this holds for any N. 

mapping x must be such that for the configuration ( x , )  of particles in the ball B E; (R) ,  

On the other hand, an easy manipulation yields: 

for v # 2 
sgn(v - 2 ) ) p ,  e2N2 

((d-aln R )  e2N2,  for v = 2 
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so that we have the following identity: 
jj =1 V u )  1 2 

V”,,( N )  = ;v( 

U 2v bb+ze N 2  a v , 2 -  

Consequently, the equality (3.2) reads: 

- Vz) - i e ’N (3.3) 

The purpose is now to simplify further the right-hand side of the relation (3.3), thus 
giving another method, albeit intuitive, to establish the validity of the bounds (2.5) we 
established in D 2. 

For the configuration x“ of particles, let us decompose the domain B‘”’(R) into N 
cells A, (Ai containing xi, x, c y ) ,  such that lAllp = 1, with ufll AI =B(”)(R) and 
Ai n A i  = 4(i Zj). The domains AI do not overlap; and the set {A+ i = 1, . . . , N }  
constitutes a subdivision of d U ) ( R ) .  Then, by definition: 

N 

i = l  
@i= V$)+ VU)(Ai) 

where V&) is the self-energy of the ball B‘”’(R), fl;’ is the Coulomb interaction 
between the cells A,, and V‘”’(Ai) is the self-energy of the cell Ai. 

Then the relation (3.3) reads: 

V,Y,!,(N) =&(Vu)-- PP V;)+ Vc’)-ivV,”d-f e2Nau,2 

(3.4) 

Neglecting the terms $Y( V&!- V!! ) ) ,  we see that: 

V:j,,(N) 3 - N ( ~ v ~ ” ) ( A 0 ) + $  e 2  Su,2) = -Nb‘”’(p) 

where & is the neutral ball B(’)(R) containing one point charge. The last inequality 
gives a new interpretation of the H-stability bounds--h(”’(p) in terms of the self-energy 
of &. These lower bounds are absolute minima of V‘”’(N) for all N and all domains, 
since (as one can show by isoperimetric inequalities), the self-energy of a ball is always 
greater than that of any other cell of the same volume. Notice that for Y = 1 dimension, 
V$ = Vd’ in (3.4). 

Up to now, we have not been able to prove (for Y > 1) that the configuration of 
particles with minimum energy has a crystalline structure. Assuming that for a very 
large system ( N  >> 1) the energy minimum is reached for a crystalline configuration of 
particles, and under the hypothesis of a crystal without distortion, all the cells have the 
same lattice constant; then they correspond to Wigner-Seitz cells, Aws (also called 
Vorono‘i polyhedra or Dirichlet regions). Of course boundary effects are not taken into 
account (the fact that for particles at the boundary, the associated dual cells are not 
strictly Wigner-Seitz cells) in the limit of an infinite system, these effects vanish. 
Neglecting (p&)- v‘”’) in (3.4) (this contribution comes from a very short-ranged 
potential for the crystalline configurations we consider), we obtain our zeroth-order 
approximation of the binding energy per particle of two- and three-dimensional Wigner 
lattices: 

(3.5) lim ( “‘F‘~)) = u!:itice = - ~ Y V ~ ) ( A ~ ~ )  1 -;r 1 2  e 
N-CO 0 
R +CO 

P fixed 
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Our estimation (3.5) gives a surprisingly accurate value for the energy of lattices in any 
dimension v. Comparison with numerical results will be presented in the next section. 
Moreover, the correctness of all the hypotheses involved previously in our analysis will 
be confirmed numerically. 

4. The energy of Wigner lattices 

This section is devoted first to the results of the numerical analysis which was carried out 
on systems up to N - 6000 particles in v = 2 and 3 dimensions, for the two-dimensional 
hexagonal, square and triangular lattices and the simple cubic lattice. In this analysis, 
the potential energy per particle has been plotted as a function of the number of 
particles in the various cases. Using the results of Q 3, we have obtained the zeroth- 
order approximation of the binding energy for various structures and compared these 
values with the numerical results deduced from the energy curves, the bounds of the 
H-stability (2.5), and moreover for v = 3 with the known values for cubic lattices 
(Coldwell-Horsfall and Maradudin 1960). In both cases, v = 2 and 3 dimensions, our 
estimation (3.5) gives very satisfactory results for each crystalline configuration. In the 
following formulae, we have put the electron charge equal to -1. 

4.1. The two-dimensional case 

First, we have calculated by computer the lattice constant a(N),  Izlmax the maximum of 
I z , ~  = IxII/R, and the reduced quantity: 

- N - 1  1 
- -[ 4 h(&) -:] +:In N--a(N) 2 N  

where (y2(N))-’=2 X?=I IxiI2/(N- 1) and -a(N)/2 is the total Coulomb energy of N 
particles on a lattice with the lattice constant equal to 1. Plots of u*‘*)(N) are given in 
figures 1, 2 and 3 for the triangular, square and hexagonal lattices. We have observed 
that, for the crystalline configuration with the minimum energy, (2 I m a x  approaches 
asymptotically quickly the value 1. Thus the corresponding crystalline configuration 
grows with the number of particles Nand  the volume of B(”(R) (the density p fixed), so 
that it covers the whole domain. Of course, ‘small’ oscillations of u*(’)(N), due to the 
sensitivity of the system to the symmetry of the ordered structure for finite N, are 
observed. 

Then, in each case, the integral of the self-energy of the Wigner-Seitz cell Aws, with 
the lattice constant equal to 1, has been computed numerically. The results are: 

1 I -2.307165 w s = o  - 
1 

(4.1) C$\= /[Aw,)2 d2x d2y lnlx - y (  = -0.805123 W S E O  i -0.220594 WS = A’. 

From the formula ( 3 3 ,  we obtain for the zeroth-order approximation of the binding 
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f ,  

oo&,+ _..__. + -..- + . . ~ . ~  _ <  ~__ .+  ,... ..-...,...-,-. *- .__- -A .--.- .- -:> 
0 1 2 3 1 5 x103 ‘ 

N 

Qure 1. Plot of u*(’)(N) for the hexagonal lattice. The H-stability bound corresponds to 
u*(’’(N) = 0. The horizontal line represents the mean value p u p  to N = 5750 (table 1). 

N 

Figure 2. Plot of u*(’)(N) for the square lattice. The H-stability bound corresponds to 
u*(’)(N) = 0. The horizontal line is the same as for figure 1. 

energy per particle of the three two-dimensional lattices: 

Q ln(4.rr2e/27) +&Chex 2 for the hexagonal lattice 

for the square lattice (4.2) 

for the triangular lattice. d In( 1 6 . ~ ~ 4 3 )  +$ C%) 

A comparison of our theoretical estimations (4.2) of the binding energy per particle of 
the three lattices with numerical asymptotic limits of u*‘*’(N) to be defined below, is 
given in table 1. 
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O O l l  
I 

0 1 2 3 5 x103 
N 

Figure 3. Plot of u*”’(N) for the triangular lattice. The H-stability bound corresponds to 
u*(’)(N) = 0. The horizontal line is the same as for figure 1. 

Table 1. Comparison of the numerical results (asymptotic limit of the energy curves) and 
the theoretical estimations (equation 4.2). 

Lattices Numerical results Theoretical estimations 

Hexagonal -bi2’(p)  +Os04678 -biz’@) + 0.032170 
Square -bi2’(p)  +0.01723 -b”’@) +0.008628 
Triangular -b”’(p)  +0.01067 -bi2’@)+0.001588 

We remark that for the square lattice, the self-energy of the Wigner-Seitz cell (unit 
volume) can be computed exactly. Thus: 

d2ql= 1 P 2  lo. d2x d2y ln(x-y(-b 

1 2 =-,(-lnp+?(.rr+~n 2)-$3-$ 

=-b(”(p)++(ln .rr+$(.rr+ln 21-y) 
= -b‘”(p) + 0.008639 

which agrees with the value given in table 1. 
In conclusion, our zeroth-order approximation, u[?/tice, (equation (4.2)), agrees very 

well with the numerical results and indicates clearly that the triangular lattice has the 
lowest energy. 

4.2. The three-dimensional case 

From our numerical analysis ( N  - 6000 particles), there is no indication that the energy 
of the FCC lattice is greater than that of the BCC lattice. Moreover, the corresponding 
known values (Coldwell-Horsfall and Maradudin 1960), coincide up to the third 
decimal; this will be reported elsewhere. 
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Using a computer, we have calculated the energy levels with the help of the formula: 

-$5(47r~/3)'/~ being the absolute minimum of V 3 ' ( N ) / N .  Notice that u * ( ~ ) ( N )  is 
independent of the choice of the lattice constant; and we expect that the value of 
u * ( ~ ) ( N )  is near to unity for large N .  The function u * ( ~ ) ( N )  is plotted in figure 4 for the 
simple cubic lattice only. 

On the other hand, as for v = 2 dimensions, our zeroth-order approximation for the 
binding energy of the cubic lattices has been obtained from formula (3.5). Let C& be 
the quantity defined by: 

The volume of the Wigner--Seitz cell is chosen to be equal to 1 for the sc lattice, 2 for 
the FCC lattice and 4 for the BCC lattice. The nearest-neighbour distance is equal to 1 for 
the sc lattice, 21/6 = 1.12 for the FCC lattice and J3(4)-1'3 = 1.09 for the BCC lattice. 
The value of Cgk has been computed numerically for the various cases. The results 
are: 

1.88231 for sc (ws) 

19.35494 for BCC (ws). 
for FCC (ws) (4.3) 

In table 2, we compare the numerical results taken from the energy curves u*'~ ' (N) ,  the 
values of our zeroth-order approximation and those given by Coldwell-Horsfall and 
Maradudin. 
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Table 2. Comparison of the numerical results (asymptotic limits of the energy curves), the 
theoretical estimations (equation (3.5)) and the values of Coldwell-Horsfall and Maradudin 
(c-HM) for the cubic lattices ( E  = (4~p/3) ' '7.  

Lattices Numerical Theoretical C-HM values 
estimations 

sc - 0.856 -0.8757706 -0.88066 
FCC - -0.8928406 -0.89536 
BCC - -0.8934226 -0.89586 

We remark that, as for the square lattice (Y = 2 dimensions), the self-energy of the 
Wigner-Seitz cell (unit volume) of the simple cubic lattice can be calculated exactly. 
Thus 

= 1.882312645 

which coincides with the value obtained by computer and given in (4.3). 
We make the following remarks. 

(i) It must be mentioned that the sequence of particles, i.e. the arrangement and 
the different values of N for each lattice structure, has been chosen as such for 
simplicity; that is in such a way that for all N the arrangement of particles exactly fills a 
certain number of shells around the origin and does this without distortion. Thus there 
is no screening here; we compute the lattice constant a ( N )  for each sequence of 
particles in the corresponding crystalline configuration, verify that all the particles are in  
the spherical domain (and in fact cover the whole spherical domain) and compute the 
Coulomb energy per particle; the lattice constant a ( N )  varies at each step and is a 
function of N, This contrasts with the usual method in which, from the beginning, the 
particles are considered on an infinite lattice. 

(ii) For v = 3 the numerical computation for the simple cubic lattice has been given 
for illustration; no extrapolation to infinite N is made in this work; moreover, the 
computations indicate that for a finite lattice (N-6000) the energy per particle is 2% 
above the limiting energy of Coldwell-Horsfall and Maradudin and of our theoretical 
zeroth-order estimation for the infinite lattice. 

(iii) For v = 2 the exact Madelung energy is not known up to date and a detailed 
theoretical analysis (the high-order correction to our zeroth-order estimation in this 
paper), which gives the energy exactly up to for u*("(N), will be given elsewhere 
(Sari, Merlini and Calinon, in preparation). Moreover, an extrapolation method of the 
numerical analysis presented in this work will also be given in detail, as well as a 
comparison with the exact Madelung ener y. 

(iv) A crude 'asymptotic' value of u*'~'(N) or better, a mean numerical value has 
been calculated up to N-6000. That is 

M 
I.. 

u*o= u*'2'(N)/M 
N =  1 

where M is the number of shells corresponding to N = 5750 (see figures 1 ,  2 and 3). 
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The numerical values are: 

hexagonal lattice u*o = 0.04678 

square lattice U= 0.01723 

triangular lattice u*”=0*01057. 

From the energy curves, we see that these values (v = 2) should only constitute an upper 
bound to the exact Madelung energy. Moreover, they are not too far from our 
zeroth-order theoretical estimation. This analysis also suggests that the triangular 
lattice should be the ground state of the two-dimensional one-component plasma. 

5. Conclusions 

Contrary to the two-dimensional case for the square and triangular lattices, the 
discrepancy between the energies of the FCC and the BCC lattices is insignificant. The 
fact that the BCC structure, which is not the most compact, is preferred to the FCC 
structure may be viewed as a very delicate balance of energy in the different spatial 
arrangements of particles. On the other hand, Wigner’s approximation in which the 
polyhedral lattice cell is replaced by the Wigner-Seitz sphere is in error only by a 
multiplicative factor of 1.00454 for the BCC structure. 

However, our estimation (3.5) of the total electrostatic interaction energy per 
particle agrees very well in any dimension and for different lattice structures with the 
numerical results obtained from our energy curves. The most attractive feature of the 
scheme which then emerges is that for the most part the work of calculating the binding 
energies consists of the computation of a‘geometrical structure constant’ 

I LA dux d”y+‘”’(b - yl), 
ws) 

which must be calculated once and for all for each type of structure. It should be 
emphasized again that our treatment is not equivalent to the spherical approximation of 
Wigner and Seitz in which the polyhedron is approximated by a sphere. In fact, our 
method takes the actual shape of the polyhedron exactly into account. On the other 
hand, since we work to zeroth-order, we have neglected (V&) - v‘,Y’), and since for large 
distances each term of (Vk) -  Vg))  = 0, the higher-order approximations which take 
into account the clusters of neighbouring Wigner-Seitz cells would provide a better 
estimation of the binding energies. 

Finally we must mention that for v = 3 dimensions, our zeroth-order approximation 
provides an upper bound on the energy levels. It should be useful to prove it. If it is 
true, then &,herel I & l =  1/p): 

It should also be interesting to prove that the energy of ionic crystals is again an upper 
bound to the binding energy of the OCP lattices. This last fact is observed, for example, 
in the simple cubic lattice of the OCP and in the caesium chloride structure which 
crystallizes on the cubic body centred structure. 
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